越学越上瘾   12.12 来百知学IT   课程全面升级

立刻报名学习

400-616-5551

您所在位置: 首页> 学习资讯> 为什么说Python是学习人工智能的第一语言?

为什么说Python是学习人工智能的第一语言?

发布百知教育 来源:学习资讯 2019-08-20

随着人工智能的热度越来越高,Python这个词我们听到的越来越多,伴随着Python这个单词一起涌入我们视线的还有很多句子:人生苦短,我用Python;Python-人工智能第一语言等等这样的句子。Python真的如大家说的那样。这么厉害么?编程语言那么多,常用的也有10多种,Python凭什么能够登上人工智能第一语言的宝座?


在所有编程语言里,Python并不算年轻,从1991年发布第一个版本,至今已经快30年了。最近几年,随着人工智能概念的火爆,Python迅速升温,成为众多AI从业者的首选语言。那么Python到底有什么魔力呢?我们从四个要点看看为什么Python能够成为人工智能的第一语言。


01、简便,直观且通俗易懂,新手福音


跟其他语言比较,Python有着简便、直观且通俗易懂的优势。我们请出了以效率著称的C语言,和在业务层面有着优秀战绩的Java语言,让他们和Python做对比。我们分别使用3种语言写一个HelloWorld,看谁对新手更友好。


首先是C语言:


1.png


嗯,代码量还行,不算{}一共有三行代码。但是,int,main,return这都是什么跟什么?对于新手来说,一开始只能强行记忆了,没有任何理解的成分,我们只需要明白printf()使用来输出的,其他的即使解释了,也跟天书没什么区别。


接下来该Java语言上场了,同样还是输出HelloWorld的例子:


2.png


貌似比C语言的更复杂了。由于Java语言面向对象的特性,所以任何代码都必须要放在class里面,所以Java的固定代码比较多。同样对于新手来说,Java语言也是从记忆到理解的过程,也只能强行记忆。


C和Java语言看上去对新手不太友好,那么Python语言会有什么表现呢?相同的例子,会不会有不一样的结果呢?


3.png


就一句话,想输出helloworld,一行print语句就够了。没有C和Java那么多格式和需要额外记忆的东西。所以谁是新手福利,谁是菜鸟杀手呢?


02、编译 VS 解释


当然,仅仅是一个Hello World的话,C和Java的代码也多不了几行。可是不要忘了,C和Java都是编译型语言,代码运行前都必须先经过编译的环节。


什么是编译呢?原来,除了艰深难懂的机器语言,我们写下的程序计算机是无法直接读取的。而是要经过“翻译”的过程,计算机才能“理解”要执行的指令。充当“翻译官”的是编译器的程序。当高级语言源程序进入计算机,被编译器翻译成目标程序,以完成源码要处理的运算并取得结果。


对于C语言来说,在不同的操作系统上使用什么样的编译器,也是一个需要斟酌的问题。一旦代码被带到新的机器,运行环境和之前不同,还需要重新编译。有时候不同的计算机的编译环境有所区别,我们还得写文件修改源代码来满足编译环境的需求。


而Python是一门解释型语言。充当编程语言与机器语言的翻译官是解释器,解释器不会一次把整个程序翻译出来,而是每翻译一行程序叙述就立刻运行,然后再翻译下一行再运行,不产生目标程序。解释器就像是同声口译,编程语言每说完一句话,解释器立即翻译给计算机,计算机立即执行程序。


数据神器NumPy


我们知道,不管是机器学习(Machine Learning, ML),还是深度学习(Deep Learning,DL),模型(Model)、算法(algorithm)、网络结构(structure)都可以用现成的,但数据是要自己负责I/O并传递给算法的。而各种算法,实际上处理的都是矩阵和向量。


NumPy由数据科学家Travis Oliphant创作,支持维度数组与矩阵运算。结合Python内置的math和random库,堪称AI数据神器!有了它们,就可以放心大胆玩矩阵了!


使用NumPy,矩阵的转置、求逆、求和、叉乘、点乘……都可以轻松地用一行代码搞定,行、列可以轻易抽取,矩阵分解也不过是几行代码的问题。而且,NumPy在实现层对矩阵运算做了大量的并行化处理,通过数学运算的精巧,而不是让用户自己写多线程程序,来提升程序效率。


有了Python这种语法简洁明了、风格统一;连矩阵元素都可以像在纸上写公式一样;写完公式还能自动计算出结果的编程语言,开发者就可以把工作重心放在模型和算法上,不用操心运行的问题了。


可视化库Matplotlib


Matplotlib 是 Python 的绘图库。它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。它也可以和图形工具包一起使用,如 PyQt 和 wxPython。


Matplotlib主要的作用就是强大的数据可视化~在做数据分析的时候可以用各种图表(条形图,散点图,条形图,饼图,堆叠图,3D 图和地图图表…..)来展现分析结果。


7.png


可以说,Matplotlib在数据科学的领域是非常好用的数据可视化工具。


Python是一门非常适合人工智能开发的语言,人工智能所需数据获取、数据分析、数据建模的流程都可以通过Python的类库轻松解决:


网络爬虫库:requests、scrapy、selenium、beautifulSoup


人工智能最重要的是数据,怎么获取巨大的数据量呢?Python的网络爬虫类库就派上用场了。爬虫是一种网络机器人,它可以像真人访问网络一样源源不断地抓取你所需要的信息。用Python制作网络爬虫,你就可以更方便地获得人工智能时代的最重要的资源——数据。


数据处理库:Numpy、scipy、pandas、matplotlib


网络爬虫获取海量数据,而处理和分析数据的工作Python同样可以解决。数据处理相关的库能够帮助你更加直观地分析数据。这些库分别可以进行矩阵计算、科学计算、数据处理、绘图等操作,有了它们,你就可以一步步开始把数据处理成你需要的格式。


建模库:nltk、keras、sklearn


完成数据可视化处理后,我们就需要利用这些数据进行建模。这些库主要是用于自然语言处理、深度学习和机器学习的,把这些用好了,你的模型就构建出来了。


这些类库为我们提供了从数据收集、数据处理和建立模型的一条龙操作,掌握它们,我们就可以在人工智能的海洋里畅游了。


04、规模效应


根据Stack Overflow网站的来自高收入国家问题阅读量的主要编程语言趋势统计,可以看出,近年来,Python已然成为目前发达国家增长最快的编程语言。


8.png


由图可见,2012年之后,对于Python相关问题的浏览量迅速增长,从时间上看,这一趋势正好和近几年人工智能的发展重合。


语言简单易学,支持库丰富强大,这两大支柱从早期就奠定了Python的发展基础。技术的普及推广就像滚雪球,早期的积累相对缓慢,一旦过了临界点,就是大爆发。别的不说,就说现在tensorflow,caffe之类的深度学习框架,主体都是用Python来实现,提供的原生接口也是Python。


正是由于上述4个特点,Python在人工智能领域中已经遥遥领先其他的语言占据了头把交椅。


上一篇:BAT的Java人员必须掌握的 20+ 种 Spring 常用注解

下一篇:java培训班 | JDK反序列化Gadgets-7u21

相关推荐