400-616-5551

您所在位置: 首页> 学习课程> python培训:一起看看Pandas中的那些Style

python培训:一起看看Pandas中的那些Style

发布百知教育 来源:学习课程 2020-04-07

Pandas的style用法在大多数教程中见的比较少,它主要是用来美化DataFrameSeries的输出,能够更加直观地显示数据结果。

下面采用某商店的零售数据集,通过实际的应用场景,来介绍一下style中那些实用的方法。

首先导入相应的包和数据集


import pandas as pd
import numpy as np

data = data = pd.read_excel('./data/sales.xlsx')
data.head()


python培训

数据集中的特征有订单号、顾客姓名、商品名、数量、单价、金额以及对应的购买日期。

输出格式化

style中的format函数可以对输出进行格式化,比如在上述的数据集中,求每位顾客的消费平均金额和总金额,要求保留两位小数并显示相应的币种。

(data.groupby(['姓名'])['金额'].agg(['mean','sum'])
                             .head(5)
                             .style
                             .format('${0:,.2f}'))


python培训


又或求每位顾客的总消费金额(保留2位小数)及其对应的占比情况(以百分数形式展现)

consumer_sales = data.groupby('姓名')['金额'].agg(['sum']).reset_index()
consumer_sales['消费金额占比'] = consumer_sales['sum'] / consumer_sales['sum'].sum()
(consumer_sales.head(5)
              .style
              .format({'sum':'${0:,.0f}''消费金额占比''{:.2%}'}))


突出显示特殊值

style还可以突出显示数据中的特殊值,比如高亮显示数据中的最大(highlight_max)、最小值(highlight_min)。

#求每个月的销售总金额,并分别用红色、绿色高亮显示最大值和最小值
monthly_sales = data.resample('M',on='日期')['金额'].agg(['sum']).reset_index()
monthly_sales['pct_of_total'] = monthly_sales['sum'] / data['金额'].sum()

format_dict = {'sum':'${0:,.0f}''日期''{:%Y-%m}''pct_of_total''{:.2%}'}
(monthly_sales.style
              .format(format_dict)
              .highlight_max(color='#cd4f39')
              .highlight_min(color='lightgreen'))


python培训


色阶样式

运用stylebackground_gradient方法,还可以实现类似于Excel的条件格式中的显示色阶样式,用颜色深浅来直观表示数据大小。

import seaborn as sns

cm = sns.light_palette("green", as_cmap=True)

(data.groupby(['姓名'])[['数量','金额']]
     .agg(['sum'])
     .head(5)
     .style
     .background_gradient(cmap=cm))


Python培训


数据条样式

同样的,对于Excel的条件格式中的数据条样式,可以用style中的bar达到类似效果,通过颜色条的长短可以直观显示数值的大小。

(monthly_sales.style
              .format(format_dict)
              .bar(color='#FFA07A', vmin=100_000, subset=['sum'], align='zero')
              .bar(color='lightgreen', vmin=0, subset=['pct_of_total'], align='zero')
)


python培训


迷你图

最后介绍一个简单好用的骚操作——sparklines的运用,它能够以字符串的形式展现一个迷你的数据特征图。

假设我现在有一个这样的需求,就是想看看所有用户的购买数量和金额的大体分布情况。

按照往常的思路,可以用可视化的形式绘制出来,但是这样稍显复杂,使用sparklines则可以简单达到这种效果。

首先需要安装sparklines这个包

pip install sparklines

因为需求的实现需要用的groupby函数,所以先定义一个处理函数

from sparklines import sparklines

# 定义sparklines函数用于展现数据分布
def sparkline_str(x):
    bins = np.histogram(x)[0]
    sl = ''.join(sparklines(bins))
    return sl

# 定义groupby之后的列名
sparkline_str.__name__ = "分布图"

data.groupby('姓名')[['数量''金额']].agg(['mean', sparkline_str])

Python培训



这样一来,就比较清晰直观地展现了每个用户的消费数量分布和消费金额分布,进而可以根据这些特征对用户的消费行为进行进一步的研究。

sparklines的功能还是挺Cool挺实用的,更具体的用法可以去看看sparklines的文档。






上一篇:不到 150 行代码写一个 Python 版的贪吃蛇

下一篇:深圳java程序员待遇怎么样,就业机会多吗

相关推荐

关闭

立即申请

www.baizhiedu.com